Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Metal-free molecular junctions on ITO via amino-silane binding-towards optoelectronic molecular junctions

Identifieur interne : 000912 ( Main/Repository ); précédent : 000911; suivant : 000913

Metal-free molecular junctions on ITO via amino-silane binding-towards optoelectronic molecular junctions

Auteurs : RBID : Pascal:14-0020172

Descripteurs français

English descriptors

Abstract

Light control over currents in molecular junctions is desirable as a non-contact input with high spectral and spatial resolution provided by the photonic input and the molecular electronics element, respectively. Expanding the study of molecular junctions to non-metallic transparent substrates, such as indium tin oxide (ITO), is vital for the observation of molecular optoelectronic effects. Non-metallic electrodes are expected to decrease the probability of quenching of molecular photo-excited states, light-induced plasmonic effects, or significant electrode expansion under visible light. We have developed micron-sized, metal free, optically addressable ITO molecular junctions with a conductive polymer serving as the counter-electrode. The electrical transport was shown to be dominated by the nature of the self-assembled monolayer (SAM). The use of amino-silane (APTMS) as the chemical binding scheme to ITO was found to be significant in determining the transport properties of the junctions. APTMS allows high junction yields and the formation of dense molecular layers preventing electrical short. However, polar amino-silane binding to the ITO significantly decreased the conductance compared to thiol-bound SAMs, and caused tilted geometry and disorder in the molecular layer. As the effect of the molecular structure on transport properties is clearly observed in our junctions, such metal-free junctions are suitable for characterizing the optoelectronic properties of molecular junctions.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0020172

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Metal-free molecular junctions on ITO via amino-silane binding-towards optoelectronic molecular junctions</title>
<author>
<name sortKey="Sergani, S" uniqKey="Sergani S">S. Sergani</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Chemistry, Ben Gurion University of the Negev</s1>
<s2>Be'er Sheva 84105</s2>
<s3>ISR</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Israël</country>
<wicri:noRegion>Be'er Sheva 84105</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Furmansky, Y" uniqKey="Furmansky Y">Y. Furmansky</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev</s1>
<s2>Be'er Sheva 84105</s2>
<s3>ISR</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Israël</country>
<wicri:noRegion>Be'er Sheva 84105</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Visoly Fisher, I" uniqKey="Visoly Fisher I">I. Visoly-Fisher</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev</s1>
<s2>Be'er Sheva 84105</s2>
<s3>ISR</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Israël</country>
<wicri:noRegion>Be'er Sheva 84105</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Solar Energy and Environmental Physics, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev</s1>
<s2>Be'er Sheva 84105</s2>
<s3>ISR</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Israël</country>
<wicri:noRegion>Be'er Sheva 84105</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">14-0020172</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 14-0020172 INIST</idno>
<idno type="RBID">Pascal:14-0020172</idno>
<idno type="wicri:Area/Main/Corpus">000303</idno>
<idno type="wicri:Area/Main/Repository">000912</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0957-4484</idno>
<title level="j" type="abbreviated">Nanotechnology : (Bristol, Print)</title>
<title level="j" type="main">Nanotechnology : (Bristol. Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Excited state</term>
<term>Indium oxide</term>
<term>Molecular electronics</term>
<term>Molecular junction</term>
<term>Molecular structure</term>
<term>Nanoelectronics</term>
<term>Optoelectronic properties</term>
<term>Optoelectronics</term>
<term>Photoinduced effect</term>
<term>Plasmon</term>
<term>Polymer</term>
<term>Quenching</term>
<term>Self-assembled layer</term>
<term>Silane</term>
<term>Spatial resolution</term>
<term>Thiol</term>
<term>Tin oxide</term>
<term>Transport properties</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Jonction moléculaire</term>
<term>Silane</term>
<term>Optoélectronique</term>
<term>Nanoélectronique</term>
<term>Résolution spatiale</term>
<term>Electronique moléculaire</term>
<term>Oxyde d'indium</term>
<term>Oxyde d'étain</term>
<term>Trempe</term>
<term>Etat excité</term>
<term>Effet photoinduit</term>
<term>Plasmon</term>
<term>Polymère</term>
<term>Couche autoassemblée</term>
<term>Propriété transport</term>
<term>Thiol</term>
<term>Structure moléculaire</term>
<term>Propriété optoélectronique</term>
<term>Substrat oxyde d'indium et de zinc</term>
<term>Substrat InSnO</term>
<term>8535</term>
<term>8565</term>
<term>7320M</term>
<term>8116D</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Polymère</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Light control over currents in molecular junctions is desirable as a non-contact input with high spectral and spatial resolution provided by the photonic input and the molecular electronics element, respectively. Expanding the study of molecular junctions to non-metallic transparent substrates, such as indium tin oxide (ITO), is vital for the observation of molecular optoelectronic effects. Non-metallic electrodes are expected to decrease the probability of quenching of molecular photo-excited states, light-induced plasmonic effects, or significant electrode expansion under visible light. We have developed micron-sized, metal free, optically addressable ITO molecular junctions with a conductive polymer serving as the counter-electrode. The electrical transport was shown to be dominated by the nature of the self-assembled monolayer (SAM). The use of amino-silane (APTMS) as the chemical binding scheme to ITO was found to be significant in determining the transport properties of the junctions. APTMS allows high junction yields and the formation of dense molecular layers preventing electrical short. However, polar amino-silane binding to the ITO significantly decreased the conductance compared to thiol-bound SAMs, and caused tilted geometry and disorder in the molecular layer. As the effect of the molecular structure on transport properties is clearly observed in our junctions, such metal-free junctions are suitable for characterizing the optoelectronic properties of molecular junctions.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0957-4484</s0>
</fA01>
<fA03 i2="1">
<s0>Nanotechnology : (Bristol, Print)</s0>
</fA03>
<fA05>
<s2>24</s2>
</fA05>
<fA06>
<s2>45</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Metal-free molecular junctions on ITO via amino-silane binding-towards optoelectronic molecular junctions</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>SERGANI (S.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>FURMANSKY (Y.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>VISOLY-FISHER (I.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Chemistry, Ben Gurion University of the Negev</s1>
<s2>Be'er Sheva 84105</s2>
<s3>ISR</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev</s1>
<s2>Be'er Sheva 84105</s2>
<s3>ISR</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Solar Energy and Environmental Physics, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev</s1>
<s2>Be'er Sheva 84105</s2>
<s3>ISR</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s2>455204.1-455204.8</s2>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>22480</s2>
<s5>354000504256520090</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>51 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0020172</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Nanotechnology : (Bristol. Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Light control over currents in molecular junctions is desirable as a non-contact input with high spectral and spatial resolution provided by the photonic input and the molecular electronics element, respectively. Expanding the study of molecular junctions to non-metallic transparent substrates, such as indium tin oxide (ITO), is vital for the observation of molecular optoelectronic effects. Non-metallic electrodes are expected to decrease the probability of quenching of molecular photo-excited states, light-induced plasmonic effects, or significant electrode expansion under visible light. We have developed micron-sized, metal free, optically addressable ITO molecular junctions with a conductive polymer serving as the counter-electrode. The electrical transport was shown to be dominated by the nature of the self-assembled monolayer (SAM). The use of amino-silane (APTMS) as the chemical binding scheme to ITO was found to be significant in determining the transport properties of the junctions. APTMS allows high junction yields and the formation of dense molecular layers preventing electrical short. However, polar amino-silane binding to the ITO significantly decreased the conductance compared to thiol-bound SAMs, and caused tilted geometry and disorder in the molecular layer. As the effect of the molecular structure on transport properties is clearly observed in our junctions, such metal-free junctions are suitable for characterizing the optoelectronic properties of molecular junctions.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D03F18</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70C20M</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B80A16D</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Jonction moléculaire</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Molecular junction</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Unión molecular</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Silane</s0>
<s2>NK</s2>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Silane</s0>
<s2>NK</s2>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Silano</s0>
<s2>NK</s2>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Optoélectronique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Optoelectronics</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Optoelectrónica</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Nanoélectronique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Nanoelectronics</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Nanoelectrónica</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Résolution spatiale</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Spatial resolution</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Resolución espacial</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Electronique moléculaire</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Molecular electronics</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Electrónica molecular</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Oxyde d'étain</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Tin oxide</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Estaño óxido</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Trempe</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Quenching</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Temple</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Etat excité</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Excited state</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Estado excitado</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Effet photoinduit</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Photoinduced effect</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Efecto fotoinducido</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Plasmon</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Plasmon</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Plasmón</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Polymère</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Polymer</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Polímero</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Couche autoassemblée</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Self-assembled layer</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Capa autoensamblada</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Propriété transport</s0>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Transport properties</s0>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Propiedad transporte</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Thiol</s0>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Thiol</s0>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Tiol</s0>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Structure moléculaire</s0>
<s5>31</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Molecular structure</s0>
<s5>31</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Estructura molecular</s0>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Propriété optoélectronique</s0>
<s5>32</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Optoelectronic properties</s0>
<s5>32</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Propiedad optoelectrónica</s0>
<s5>32</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Substrat oxyde d'indium et de zinc</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Substrat InSnO</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>8535</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>8565</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>7320M</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>8116D</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>020</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000912 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000912 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:14-0020172
   |texte=   Metal-free molecular junctions on ITO via amino-silane binding-towards optoelectronic molecular junctions
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024